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Abstract—This paper explores the use of deep reinforcement
learning (DRL) to improve the efficiency and effectiveness of
maritime search and rescue (SAR) operations using autonomous
drones. This paper compares the performance of two RL al-
gorithms, Proximal Policy Optimization (PPO) and Deep Q-
Network (DQN), against a greedy search algorithm in a sim-
ulated SAR environment. The results show that PPO and DQN
outperform the greedy search approach, particularly in more
complex environments with higher dispersion increments (faster
expansion of the search area). PPO demonstrates significantly
faster learning and achieves higher success rates compared to
DQN.

Index Terms—Deep Reinforcement Learning, Simulation,
Search and Rescue

I. INTRODUCTION

The issue of missing persons-in-water (PIW) is as old as
humankind itself, and given the chaotic nature of the ocean,
search and rescue (SAR) operations have never been optimal,
with limitations on the human ability ranging from the creation
of proper search paths to visibility and recognition of PIW. Ac-
cording to several authors, using drones allows for continuous
search over extended periods of time and distances. While the
capabilities of artificial intelligence (AI) with reinforcement
learning for problem-solving are still in their infancy, it is
theorized that introducing AI for SAR applications may sig-
nificantly improve the efficacy of search operations and reduce
the time needed to find and save PIW [1, 2]. Reinforcement
Learning (RL) is believed to enable the development of new,
more efficient search patterns tailored to specific applications.
This is based on the hypothesis that reward maximization is
sufficient to foster generalization abilities, thereby creating
powerful agents [3]. Such advancements could potentially lead
to the saving of more lives.

Ai [2] explores reinforcement learning (RL) in maritime
SAR, using boats for the search. The study focuses on
decision-making, search area determination, and maritime
vehicle deployment, using metrics like the probability of detec-
tion (POD), probability of containment (POC), and probability
of success (POS). A drift prediction component forecasts the

trajectory of distressed objects, constructing a search grid
with cells assigned a POC. Using Q-learning, the algorithm
selects actions to maximize POS based on the current state.
Experimental results show effective coverage with minimized
redundancy.

Wu [1] builds on this with deep reinforcement learning
(DRL), using the DQN algorithm, where deep neural networks
replace the Q-table, allowing the algorithm to approximate
values and choose the best action based on the environment.
Experiments show this approach matches or exceeds the Q-
learning results, completing SAR missions more efficiently.
However, both methods assume a constant search area, not
accounting for dynamic factors like wind or waves during the
search.

The LSAR [4], Q-learning [2], UAS [5], and DQN [1]
approaches all use probability regions to locate targets. LSAR
consistently centers the highest probability region, while other
methods use maritime data and statistical methods. LSAR and
UAS employ multiple agents, with LSAR drones communicat-
ing upon detection and UAS agents operating independently.
Each approach aims to optimize SAR missions and enhance
success rates using distinct strategies. In this paper, the success
rate refers to the likelihood of successfully locating and
rescuing subjects within a specific timeframe, minimizing the
search duration.

Abreu [6] implemented a Reinforce algorithm that considers
a dynamic map of probabilities, representing the chances of
a person being found and the position of other agents. This
work compares a reinforcement learning algorithm with a
parallel sweep [7] algorithm with a pre-defined behavior. This
work provided a proof of concept, supporting the notion that
reinforcement learning strategies outperform predefined paths
in efficiency and effectiveness. However, this work did not
compare reinforcement learning algorithms with other algo-
rithms used in search and rescue missions, such as algorithms
that explore heuristics to find the best path to the target.

This paper compares deep reinforcement learning (DRL)
algorithms with greedy search algorithms. We aim to improve



real-world SAR operations using reinforcement learning (RL).
Previous studies [1, 2, 6] show promising results for RL in
SAR, and we will build on this by demonstrating how RL can
help achieve faster search and high recovery rates in tested
scenarios. We also will use a simulation tool [8] that is more
complex and realistic than the simulation tools used by [2]
and [1].

This paper is structured as follows: in the section II, we
provide an overview of rescue and search strategies; in the
section III, we describe the environment used to train and
validate the algorithms; in the section IV, we present our
experiments and results; finally, we discuss our findings.

II. RESCUE AND SEARCH STRATEGIES

Implementing efficient algorithms in autonomous maritime
search and rescue operations is paramount to ensuring timely
and effective responses to emergencies. Two distinct ap-
proaches could be explored in this domain: greedy search
algorithms and reinforcement learning methodologies [1, 2,
5, 7]. The greedy search algorithm operates on the principle
of immediate reward maximization, making decisions based
solely on the information available at the current moment.
While this algorithm may yield satisfactory results in specific
scenarios, its deterministic nature often leads to suboptimal
solutions, particularly in complex and dynamic environments
such as maritime search and rescue missions.

In contrast, reinforcement learning offers a promising al-
ternative by allowing autonomous agents to learn and adapt
their behaviors through interaction with the environment. By
leveraging a system of rewards and punishments, reinforce-
ment learning enables agents to explore various strategies and
gradually refine their decision-making processes over time. In
maritime search and rescue, reinforcement learning empowers
agents to navigate unpredictable conditions, dynamically allo-
cate resources, and optimize search patterns to maximize the
chances of locating and rescuing survivors.

A. Greedy search approach

Informed algorithms have some form of knowledge about
the task at hand, such as locations to search, time, or other
factors assumed necessary for solving the task. In this case,
the informed algorithm selected was a greedy search.

The greedy search was constructed using a simple yet effec-
tive heuristic. For N drones, each drone receives a point from
the list of highest probabilities, moves toward the end, and
searches for it. This algorithm was selected based on its ease of
implementation, non-stochastic behavior, and its effectiveness
in the current environment used for the simulations.

B. Deep Reinforcement Learning implementation

To effectively compare and evaluate multiple search algo-
rithms, we utilized the RLlib [9] library to implement the re-
inforcement learning algorithms Proximal Policy Optimization
(PPO) [10] and Deep Q-Network (DQN) [11].

DQN and PPO were chosen to represent the main algorithms
from the value-based and policy-based families, respectively.

Value-based algorithms, like DQN, approximate the value
function for the environment through a trained Q-table or
Q-network. In contrast, policy-based algorithms, like PPO,
approximate an ideal policy by mapping states to actions, often
using neural networks. These algorithms do not directly map
all possible actions and states to rewards but instead optimize
policy parameters to maximize cumulative rewards [12].

The two algorithms differ in their learning and exploration
strategies, which are crucial for the reinforcement learning
process. PPO selects actions by sampling from the probability
distribution output by its policy network, facilitating higher
exploration when the agent is uncertain and greater exploita-
tion as the agent learns. In contrast, DQN uses an ϵ-greedy
algorithm, balancing exploration by sampling random actions
and exploitation by choosing actions with the highest Q-value.

III. ENVIRONMENT

For this project, the Drone Swarm Search Environment
(DSSE) framework, developed by the authors and available as
a Python package [8], was used to study the viability of using
reinforcement learning in searching for shipwrecked people.

This environment is designed to train RL agents to locate
PIW and simulate its movement in real time. It concludes
when all PIW are found or a certain time step limit is reached.
This environment incorporates relevant variables to the search
scenario, such as the POD, number of PIW, and vector values
that guide the movement of both the PIW and the probability
matrix.

The environment is a 2D grid with a probability matrix rep-
resenting the probability of containing a PIW. The probability
matrix is based on a Gaussian distribution and a dispersion
increment, which controls the Gaussian expansion rate. The
distribution is calculated using the bi-dimensional Gaussian
function presented in the equation 1.
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where A is the amplitude of the Gaussian function, x0 e y0
are the coordinates of the supposed position of the PWI. σx e
σy define how the function will be stretched along the matrix,
and correspond to the dispersion increment, determining how
quickly the Gaussian expands in both directions. Finally, x e y
represent the horizontal and vertical positions within the grid.

The dispersion increment dictates the rate at which the
Gaussian expands. For instance, 0.1 allows faster expansion,
suitable for cases where the PIW moves rapidly, while 0.05
provides a slower, more precise spread. These values were
chosen to balance coverage and accuracy in different scenarios.

A vector representing ocean currents and the wind controls
the direction of movement. The PIW’s movement is influenced
by the probabilities in the matrix, which select a pseudo-
random direction weighted by the probabilities of adjacent
cells and an independent movement vector.

The environment states are represented as a tuple of two
boxes: one for the drone’s position (x, y) and another for



the probability matrix. This allows the agents to use the
probabilities and their own positions to decide the best action,
facilitating the orchestration of complex search patterns to
find the PIW. The environment’s action space is discrete,
consisting of 9 actions: moving in the cardinal and inter-
cardinal directions and searching the current cell. With a
Probability of Detection (POD) of 1.0, the environment is
deterministic, but with lower values, it becomes stochastic.
The problem is a sparse reward problem, as the goal is reached
only when the PIW is found. The reward scheme represents
this, as seen in the equation 2.

R(Ts) =

{
2− Ts

Tslimit
, if found

0 otherwise
(2)

where Ts is the time step that the PIW was found and
Tslimit is the configurable time step limit.

IV. EXPERIMENTS AND RESULTS

The training data was collected through simulated SAR
missions in the DSSE environment, employing DQN and PPO
algorithms and the baseline greedy search for comparison. The
training process for the algorithms involves various configura-
tions of the environment, each using a 40x40 navigation grid in
a multi-agent scenario with four agents. A key variable in these
configurations is the dispersion increment, set to 0.1 and 0.05.
Dispersion is the rate at which the probability matrix spreads
within the environment. A higher dispersion rate means the
search area expands quickly.

The validation data was collected by running the SAR
mission simulation 5,000 times. This involved the greedy
algorithm and the trained DQN and PPO algorithms across
two neural network modes in the same environment.

The training routine using RLlib [9] collected rewards
received, the number of actions taken, and whether the agents
found the PIW in each trial. The training data analysis involved
calculating the moving average of the rewards and actions,
with the window size depending on the training batch. Data
was collected in parallel using RLlib and stored by the Learner,
the class within RLlib responsible for defining neural network
training parameters and data gathering for later analysis.

Tests using RL algorithms on a 40x40 grid with dispersion
increments of 0.1 and 0.05 show that RL outperforms the
greedy approach in more complex environments. PPO sig-
nificantly outperformed the greedy approach, with a 75.44%
success rate versus 35.84% for 0.1 dispersion increment and
83% versus 50.18% for 0.05. Remember, the success rate
refers to the likelihood of successfully locating and rescuing
subjects within a specific timeframe.

Furthermore, reinforcement learning algorithms can learn
complex search patterns, coordinate to encircle the probability
matrix in its front and rear and intercept the PIW, which is
suitable for unpredictable SAR missions.

Figures in 1 and 2 display PPO learning curves for these
configurations and compare PPO and DQN learning. Accord-
ing to these results, PPO learns a better policy much quicker

than DQN, achieving rewards between 1.4 and 1.75, while
DQN reaches only 0.4. PPO training took 3 hours, whereas
DQN took 23 hours. PPO’s advantage is attributed to its action
probability distribution, allowing better exploration of states
the agent has less knowledge about. Thus, PPO was chosen
for further tests.

Fig. 1. Learning curves for PPO on 0.1 and 0.05 dispersion increment
configuration

Fig. 2. Learning curve comparison of PPO and DQN on 0.1 dispersion
increment configuration

V. CONCLUSIONS AND FUTURE WORK

This paper proposes using PPO and DQN algorithms to
implement drones’ behavior in search and rescue activities.
We showed that RL techniques have superior adaptability
and performance compared to a pre-determined, informed
algorithm, especially when PIWs deviate from regions of
highest probability. The results confirm that RL algorithms
outperform the greedy approach in all metrics. PPO achieved a
75.44% success rate with a 0.1 dispersion increment and 83%



with a 0.05 increment, compared to the greedy algorithm’s
35.84% and 50.18%, respectively. DQN failed to learn an
effective strategy.

Furthermore, the agents trained using the PPO algorithm
consistently demonstrated the ability to locate the target
swiftly across various configurations. This aspect aligns with
the critical need for prompt responses in scenarios involving
shipwrecked individuals. Scaling up the number of drones
resulted in faster and more accurate responses, justifying the
utilization of multiple agents.

Further investigations are imperative to thoroughly evalu-
ate the effectiveness of reinforcement learning in addressing
Search and Rescue (SAR) challenges. It is hypothesized
that as the training environment for the agents incorporates
heightened realism, featuring additional factors such as wind
currents, a more faithful simulation of Person in Water (PIW)
movement, expanded search areas, increased dispersion num-
bers, and the integration of probability of detection based
on diverse climate scenarios (e.g., fog, nocturnal conditions,
storms, and strong waves), reinforcement learning agents are
poised to develop varied and potentially more efficient search
patterns.

Moving from simulation to real-world deployment intro-
duces critical challenges that must be addressed to fully realize
DRL’s potential in SAR operations. Key considerations include
drone hardware limitations, sensor accuracy, reliable commu-
nication in maritime conditions, and robust safety protocols.
Additionally, adapting RL models to real-world variability,
such as unpredictable weather and complex water dynamics,
will be essential. Tackling these practical issues is vital to
advancing DRL applications and ensuring that SAR missions
benefit from enhanced reliability and efficiency in real-world
scenarios.
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